

$\begin{array}{c} {\rm MATH~234} \\ {\rm SECOND~HOUR~EXAM} \end{array}$

Student Name: New I	Student Number:	
Instructor:	Section:	
Question 1. (1 point each) Answer	by true or false:	
1 Any set of vectors contain	Any set of vectors containing the zero vector is linearly independent.	
2. \square The rank of a matrix A is	F The rank of a matrix A is the number of the nonzero rows of A .	
3. A is an $m \times n$ matrix,	If A is an $m \times n$ matrix, then rank $(A) \leq m$.	
4. The set $\{1, \sin^2 x, \cos^2 x\}$	The set $\{1, \sin^2 x, \cos^2 x\}$ is linearly dependent in $C[0, \pi]$.	
5. Any basis of $\mathbb{R}^{2\times4}$ must c	Any basis of $\mathbb{R}^{2\times 4}$ must contain exactly eight vectors.	
6. If A is a 4×4 matrix with	$a_2 = -a_4$, then $N(A) \neq \{0\}$.	
7.	pan a vector space V and \mathbf{v}_1 is a linear combination of $\mathbf{v}_2, \dots, \mathbf{v}_n$,	
8 Every set of vectors that s	spans \mathbb{R}^5 must contain at least five vectors.	
9 The columns of a nonsing	ular 10×10 matrix form a basis for \mathbb{R}^{10} .	
10. The set $\{(x_1, x_2, x_3, x_4)^T \mid$	$x_1 + x_3 = 0$ } is a subspace of \mathbb{R}^4 .	
11. If $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly in	dependent in \mathbb{R}^3 , then span $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) = \mathbb{R}^3$.	
12. The functions $f(x) = 3x$ a	and $g(x) = -3x $ are linearly independent in $C[-4, 0]$.	
13. P_2 , the coordinate vect	or of $12 + 6x$ with respect to the basis $\{x, 4\}$ is $(3, 6)^T$.	
14 If three vectors span a vec	tor space V , then $dim(V) = 3$.	
15 The transition matrix corre	sponding to the change of basis in a vector space ${\cal V}$ is always nonsingular.	
16 If the system $A\mathbf{x} = \mathbf{b}$ is in	consistent, then b does not belong to the column space of A .	
17 The vectors $(4,2,3)^T$, $(2,3)^T$	$(1,1)^T,(2,5,3)^T,(2,0,3)^T$ are linearly dependent in \mathbb{R}^3 .	
18 If A is a 5×4 matrix and	Ax = 0 has only the trivial solution, then $rank(A) = 4$.	
19. F In \mathbb{R}^3 , every set containing	more than three vectors can be reduced to form a basis for \mathbb{R}^3 .	
20. \mathbb{F} \mathbb{R}^2 is a subspace of \mathbb{R}^4 .		
21 Priggs subspace of P.		

Question 2 (3 points each) Circle the most correct answer:

- 1. One of the following sets is a basis for P_3 .
 - (a) $\{x+2, x-1, x^2\}$
 - (b) $\{x^2, x, 5, x+1\}$
 - (c) $\{x^2+x+1, x^2-x\}$
 - (d) $\{x^2+3, x^2+2, 1\}$
- 2. One of the following statements is false:
 - (a) $\dim(\mathbb{R}^{2\times 3}) = 6$.
 - \bigcirc dim $(C^6[-1,1]) = 6.$
 - (c) $\dim(P_6) = 6$.
 - (d) $\dim(\{0\}) = 0$.
- 3. If the set $\{u_1, u_2, \dots, u_n\}$ is a spanning set of a vector space V, then
 - (a) The set $\{u_1, u_2, \dots, u_{n-1}\}$ is also a spanning set of V.
 - (b) The set $\{u_1, u_2, \ldots, u_n, u\}$ is also a spanning set of V for any $u \in V$.
 - (c) dim(V) = n
 - (d) $dim(V) \ge n$
- 4. If V is a vector space with dim(V) = 10 and the vectors v_1, \ldots, v_k are linearly independent, then
 - (a) k < 10
 - (b) $k \le 10$
 - (c) k > 10
 - (d) $k \ge 10$
- 5. One of the following is a spanning set of \mathbb{R}^3
 - (a) $\{(1,1,1)^T, (3,3,3)^T, (1,0,0)^T\}$
 - (b) $\{(1,0,0)^T, (0,1,0)^T, (1,1,0)^T, (0,2,0)^T\}$
 - $(1,1,1)^T, (1,2,1)^T, (1,0,0)^T$
 - (d) $\{(1,0,0)^T,(0,1,1)^T\}$
- 6. The vectors $1, x, x^2, x^2 + x 1$
 - (a) span P_3
 - (b) span P_4
 - (c) are linearly independent in P_3
 - (d) are linearly independent in P_4

- 7. One of the following sets is a subspace of C[-1,1]
 - (a) $\{f(x) \in C[-1,1] ; f(1) = -1\}$
 - (b) $\{f(x) \in C[-1,1] ; f(1) = 0\}$
 - (c) $\{f(x) \in C[-1,1] ; f(1) = 1\}$
 - (d) $\{f(x) \in C[-1,1] ; f(1) = 0 \text{ or } f(-1) = 0\}$
- 8. Let

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{bmatrix}. \ rank(A) = 3 \text{ if}$$

- (a) $a \neq 0$ and $b \neq 0$
- (b) a = 0 and b = 0
- (c) $a \neq 0$ and b = 0
- (d) a = 0 and $b \neq 0$
- 9. Consider the ordered basis $B = \{e_1, e_1 e_2\}$ for \mathbb{R}^2 . If $[v]_B = (1, -1)^T$, then v =

 - (a) $-e_2$. (b) $(0,1)^T$.
 - (c) $2e_1 + e_2$.
 - (d) $e_1 + e_2$.
- 10. Let A be a 3×3 matrix with rank(A) = 2, then
 - (a) A is singular.
 - (b) Ax = 0 has a nontrivial solution.
 - (c) Nullity of A is 1.
 - (d) All of the above.
- 11. Let V be a vector space such that dim(V) = 5, then
 - (a) Any five vectors in V are linearly independent.
 - (b) Any five vectors in V form a spanning set for V.
 - (c) Any basis for V has five vectors.
 - (d) All of the above.
- 12. Let $S = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ be the transition matrix from the basis $\{v_1, v_2\}$ to the basis $\{(1,1)^T, (1,-1)^T\}$. Then $\{v_1, v_2\} =$
 - (a) $\{(2,0)^T, (3,-1)^T\}.$ (b) $\{(1,0)^T, (3,-2)^T\}.$

 - (c) $\{(2,3)^T, (0,-1)^T\}$
 - (d) $\{(1,-1)^T,(3,1)^T\}.$

- 13. One of the following vector spaces is infinite-dimensional.
 - (a) R
 - (b) P_8
 - (c) C[-2,2]
 - (d) span (x, e^x, xe^x)

Question 3.(8 points) Find a basis and the dimension of the following subspaces:

1.
$$S = \{(a, b, c, d)^T ; b = -d\}$$

$$(a,b,c,-b)^{T} = a(1,0,0,0)^{T} + b(0,1,0,-1)^{T} + c(0,0,1,0)^{T}$$

2.
$$S = \{p(x) \in P_3 ; p''(x) = 0\}$$

$$P(x) = Q(x)^{2} + bx + C \rightarrow P'(x) = 2ax + b \rightarrow P'(x) = 2a = 0$$

$$p \in S \Rightarrow p(x) = bx + c = b(x) + ca)$$

Sina {x,13 is lin ind. => {x,13 formabasisfors

Question 4.(12 points) Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

1. Find a basis for the row space of
$$A$$

2. Find a basis for the column space of
$$A$$

2. Find a basis for the column space of
$$A$$

$$\left\{ \begin{pmatrix} 1 & 1 & -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \right\}$$

3. Find a basis for the null space of A

$$|A \times Y_1 = I \Rightarrow X_3 = -I, \quad X_1 = 0, \quad X_1 = 0$$

$$|A \times Y_2 = I \Rightarrow X_3 = -I, \quad X_2 = 0, \quad X_1 = 0$$

$$|A \times Y_1 = I \Rightarrow X_3 = -I, \quad X_2 = 0, \quad X_1 = 0$$

$$|A \times Y_1 = I \Rightarrow X_2 = -I, \quad X_2 = 0, \quad X_1 = 0$$

$$|A \times Y_1 = I \Rightarrow X_2 = -I, \quad X_2 = 0, \quad X_1 = 0$$

$$|A \times Y_1 = I \Rightarrow X_2 = -I, \quad X_2 = 0, \quad X_1 = 0$$

$$|A \times Y_1 = I \Rightarrow X_2 = -I, \quad X_2 = 0, \quad X_1 = 0$$

$$|A \times Y_1 = I \Rightarrow X_2 = -I, \quad X_2 = 0, \quad X_1 = 0$$

$$|A \times Y_1 = I \Rightarrow X_2 = -I, \quad X_2 = 0, \quad X_1 = 0$$

$$|A \times Y_1 = I \Rightarrow X_2 = -I, \quad X_2 = 0, \quad X_1 = 0$$

$$|A \times Y_1 = I \Rightarrow X_2 = -I, \quad X_2 = 0, \quad X_1 = 0$$

$$|A \times Y_1 = I \Rightarrow X_2 = -I, \quad X_2 = 0, \quad X_1 = 0$$

$$|A \times Y_1 = I \Rightarrow X_2 = -I, \quad X_3 = -I, \quad X_4 = 0, \quad X_4 = 0$$

$$|A \times Y_1 = I \Rightarrow X_4 = I, \quad X_4 = I, \quad$$

Question 5.(8 points) Let E = [3x + 6, 9] and F = [2x + 1, x - 4] be two ordered bases of P_2

- 1. Find the transition matrix corresponding to the change of basis from E to F
- 2. Use part (1) to find the coordinate vector of 3x + 15 with respect to the basis F

2.
$$3x+15 = 1(3x+6)+1(9)$$

$$\Rightarrow [3x+15]_{F} = \begin{bmatrix} 2 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$$

$\begin{array}{c} {\rm MATH~234} \\ {\rm SECOND~HOUR~EXAM} \end{array}$

Stude	ent Name: <a block"="" href="#eq:</th><th>Student Number:</th></tr><tr><th>Instru</th><th>actor:</th><th>Section:</th></tr><tr><td>Q</td><td>uestion 1. (1 point each) Answer by true or</td><td>false:</td></tr><tr><td>1.</td><td colspan=2>I. If A is an <math>m \times n</math> matrix, then <math>rank(A) \leq m</math>.</td></tr><tr><td>2.</td><td colspan=2>The set <math>\{1, \sin^2 x, \cos^2 x\}</math> is linearly dependent in <math>C[0, \pi]</math>.</td></tr><tr><td>3.</td><td colspan=2>Any basis of <math>\mathbb{R}^{2\times 4}</math> must contain exactly eight vectors.</td></tr><tr><td>4.</td><td colspan=2>If A is a <math>4 \times 4</math> matrix with <math>a_2 = -a_4</math>, then <math>N(A) \neq \{0\}</math>.</td></tr><tr><td>5.</td><td colspan=2>5. Any set of vectors containing the zero vector is linearly independent.</td></tr><tr><td>6.</td><td colspan=2>6. The rank of a matrix <math>A</math> is the number of the nonzero rows of <math>A</math>.</td></tr><tr><td>7.</td><td><math display=">\frac{1}{\text{then } V = \text{span}(\mathbf{v}_2, \dots, \mathbf{v}_n \text{ span a vectors } \mathbf{v}_n)}.<td>or space V and \mathbf{v}_1 is a linear combination of $\mathbf{v}_2, \ldots, \mathbf{v}_n$,</td>	or space V and \mathbf{v}_1 is a linear combination of $\mathbf{v}_2, \ldots, \mathbf{v}_n$,
8	The functions $f(x) = 3x$ and $g(x) =$	-3x are linearly independent in $C[-4,0]$.
9.	F In P_2 , the coordinate vector of 12 +	$6x$ with respect to the basis $\{x,4\}$ is $(3,6)^T$.
10	If three vectors span a vector space	V, then $dim(V) = 3$.
11	The transition matrix corresponding	to the change of basis in a vector space V is always nonsingular.
12	If the system $Ax = b$ is inconsistent	, then b does not belong to the column space of A .
13	The vectors $(4, 2, 3)^T$, $(2, 3, 1)^T$, $(2, 5, 5, 1)^T$	$(2,0,3)^T$ are linearly dependent in \mathbb{R}^3 .
14	If A is a 5×4 matrix and $Ax = 0$ has	as only the trivial solution, then $rank(A) = 4$.
15	In \mathbb{R}^3 , every set containing more that	In three vectors can be reduced to form a basis for \mathbb{R}^3 .
16	\mathbb{R}^2 is a subspace of \mathbb{R}^4 .	
17	P_2 is a subspace of P_4 .	
18	Every set of vectors that spans \mathbb{R}^5 m	nust contain at least five vectors.
19	The columns of a nonsingular 10×1	0 matrix form a basis for \mathbb{R}^{10} .
20	The set $\{(x_1, x_2, x_3, x_4)^T \mid x_1 + x_3 =$	0 } is a subspace of \mathbb{R}^4 .
21	If $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent	in \mathbb{R}^3 , then span $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) = \mathbb{R}^3$.

Question 2 (3 points each) Circle the most correct answer:

- 1. Let V be a vector space such that dim(V) = 5, then
 - (a) Any five vectors in V form a spanning set for V.
 - (b) Any five vectors in V are linearly independent.
 - (c) Any basis for V has five vectors.
 - (d) All of the above.
- 2. One of the following vector spaces is infinite-dimensional.
 - (a) span (x, e^x, xe^x)
 - (b) R
 - $(c) P_8$ (d) C[-2,2]
- 3. One of the following sets is a subspace of C[-1, 1]
 - (a) $\{f(x) \in C[-1,1] ; f(1) = 0\}$
 - (b) $\{f(x) \in C[-1,1] ; f(1) = 1\}$
 - (c) $\{f(x) \in C[-1,1] ; f(1) = -1\}$
 - (d) $\{f(x) \in C[-1,1] ; f(1) = 0 \text{ or } f(-1) = 0\}$
- 4. Let

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{bmatrix}. \ rank(A) = 3 \text{ if}$$

- (a) $a \neq 0$ and b = 0
- (b) a = 0 and $b \neq 0$
- (c) $a \neq 0$ and $b \neq 0$
- (d) a = 0 and b = 0
- 5. Consider the ordered basis $B = \{e_1, e_1 e_2\}$ for \mathbb{R}^2 . If $[v]_B = (1, -1)^T$, then v =
 - (a) $2e_1 + e_2$.
 - (b) $e_1 + e_2$.
 - (c) $-e_2$.
 - $(0,1)^T$
- 6. Let A be a 3×3 matrix with rank(A) = 2, then
 - (a) Ax = 0 has a nontrivial solution.
 - (b) Nullity of A is 1.
 - (c) A is singular.
 - (d) All of the above.

- 7. Let $S = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ be the transition matrix from the basis $\{v_1, v_2\}$ to the basis $\{(1,1)^T, (\bar{1},-1)^T\}$. Then $\{v_1,v_2\}=$
 - (a) $\{(2,3)^T, (0,-1)^T\}.$

 - (b) $\{(1,-1)^T, (3,1)^T\}.$ (c) $\{(2,0)^T, (3,-1)^T\}.$
 - (d) $\{(1,0)^T, (3,-2)^T\}$
- 8. If V is a vector space with dim(V) = 10 and the vectors v_1, \ldots, v_k are linearly independent, then
 - (a) k > 10
 - (b) $k \ge 10$
 - (c) k < 10
 - (d) $k \leq 10$
- 9. One of the following is a spanning set of \mathbb{R}^3
 - (a) $\{(1,1,1)^T, (3,3,3)^T, (1,0,0)^T\}$
 - (b) $\{(1,0,0)^T,(0,1,1)^T\}$
 - (c) $\{(1,0,0)^T, (0,1,0)^T, (1,1,0)^T, (0,2,0)^T\}$ (d) $\{(1,1,1)^T, (1,2,1)^T, (1,0,0)^T\}$
- 10. The vectors $1, x, x^2, x^2 + x 1$
 - (a) are linearly independent in P_3
 - (b) are linearly independent in P_4
 - (c)span P_3
 - (d) span P_4
- 11. One of the following sets is a basis for P_3 .
 - (a) $\{x^2, x, 5, x+1\}$
 - (b) $\{x^2+x+1, x^2-x\}$

 - (c) $\{x^2 + 3, x^2 + 2, 1\}$ (d) $\{x + 2, x 1, x^2\}$
- 12. One of the following statements is false:
 - (a) $\dim(P_6) = 6$.
 - (b) $\dim(\mathbb{R}^{2\times 3}) = 6$.
 - (c) $\dim(C^6[-1,1]) = 6.$
 - (d) $\dim(\{0\}) = 0$.

13. If the set $\{u_1, u_2, \dots, u_n\}$ is a spanning set of a vector space V, then

- (a) dim(V) = n
- (b) $dim(V) \ge n$
- (c) The set $\{u_1, u_2, \ldots, u_{n-1}\}$ is also a spanning set of V.
- (d) The set $\{u_1, u_2, \ldots, u_n, u\}$ is also a spanning set of V for any $u \in V$.

Question 3.(8 points) Find a basis and the dimension of the following subspaces:

1.
$$S = \{(a, b, c, d)^T ; b = -d\}$$

2.
$$S = \{p(x) \in P_3 ; p''(x) = 0\}$$